N8§9-16349

Intelligent User Interface Concept for Space Station
by:

Edward Comer, Cameron Donaldson, and Kathleen Gilroy
Software Productivity Solutions, Inc.

and

Elizabeth Bailey
Software Metrics, Inc.

Introduction

The space station computing system must interface with a wide variety of
users, from highly skilled operations personnel to payload specialists from
all over the world. The interface must accommodate a wide variety of
operations from the space platform, ground control centers and from remote
sites. As a result, there is a need for a robust, highly configurable and
portable user interface that can accommodate the various space station
missions.

This paper presents the concept of an intelligent user interface executive,
written in Ada, that would support a number of advanced human interaction
techniques, such as windowing, icons, color graphics, animation, and natural
language processing. The user interface would provide intelligent interaction
by understanding the various user roles, the operations and mission, the
current state of the environment and the current working context of the users.

In addition, the intelligent user interface executive must be supported by
a set of tools that would allow the executive to be easily configured and to
allow rapid prototyping of proposed user dialogues. This capability would
allow human engineering specialists acting in the role of dialogue authors to
define and validate various user scenarios. The paper will discuss the set of
tools required to support development of this intelligent human interface
capability and will outline the prototyping and validation efforts required
for development of the Space Station'’s user interface.

The Space Station User Interface Problem

The space station user interface represents one of the greatest challenges
in human-machine interaction to date. The development, operation and use of
the space station will involve thousands of people from all over the world.
The space station user community will include private industry, universities,
and other government agencies as well as the various NASA centers and their
contractors.

The space station user interface must provide support for traditional
ground-based, on-orbit and payload operations, each of which involves numerous
operational roles. The test and integration function is representative of the
diversity of these roles [DOR83]:

o mission and operations planning
o simulation and modeling
o manufacturing development and test

E.4.2.1



pre- and post-launch integration and testing
on-orbit integration and testing

on-orbit maintenance and repair

payload integration and testing

user payload data processing

environment monitoring and control

real-time flight and operaitonal functions

O 0000 OO0

While the need to support traditional operational roles like launch and
flight control will continue with the space station, an increasing number of
users will not have experience with NASA mission operations. As a multi-
purpose facility, the space station will support users of its scientific
laboratories and payloads, users running manufacturing and repair operations,
and users providing transportation services.

Space station activities will be distributed over many sites (both
government and commercial), including space platforms, maneuvering vehicles,
ground-based command stations, and data collection centers. Many of the
activities currently performed by ground-based personnel on specialized
systems will have to be executed on the space platform using multi-purpose
equipment.

Analysis of user interface technology currently in use on NASA projects
demonstrates that it is clearly not adequate to meet the space station
challenge. Some of the problems that must be addressed include:

o Integration with other systems and off-the-shelf products (currently
difficult or not possible)

o Lack of support for advanced interaction techniques

o Inadequate development tools

o Lack of uniformity - Interfaces differ from system to system, payload
to payload, and site to site

o Difficult to use - require the assistance of specialists to accomplish
mission (not applications-oriented); not tailorable to needs of
individual users; poorly human-engineered;

o Modifications often require reimplementation

o Difficulty in performing validation in either off-line or real-time
modes

Benefits to be derived from improving the current user interaction approach
include:

o Reduced life cycle cost by providing the necessary flexibility for users
to accomplish new mission operations, and longer life of the operational
software due to increased adaptability [BAS85]

o Greater level of automated support, providing easier operations, use,
modification, maintenance and validation [DOR85]

o Increased operational confidence because personnel can perform activities
themselvestORSS]

E.4.2,2



Types of Interaction to be Supported

A variety of user-interaction styles have been made possible by advances in
hardware technology. With an increase in the amount of the information that
can be displayed and the operations available, the potential for effective and
highly usable interfaces is greatly increased. Given the anticipated number
of users and wide variety of user profiles for the Space Station computing
system, it is essential that the user interface take advantage of proven
sophisticated technologies such as advanced graphics, animation and natural
language.

Graphics may be used in any of a number of ways to support the Space
Station mission, including map generation, reading and analysis, decision
support aids, teleconferencing, modeling and simulation, and the generation of
forms, reports and presentations., This variety of applications places special
requirements on the graphics functionality. Functional requirements can be
separated into graphics output capabilities, graphics input capabilities, and
the storage, retrieval and transfer of graphics information. An excellent
detailed discussion of the classes of graphic interaction and techniques to
support them is provided in [FOL84].

Output capabilities needed include support for display of chart, graph and
other two-dimensional diagrams, display of image data, and support for high
quality typography, a variety of colors in display output, and animation
(discussed in later paragraphs). The use of color has evolved so rapidly that
most systems do not effectively use it. Useful guidelines for the exploita-
tion of color can be found in [MUR84]. It is expected that dynamic display
capabilities, such as "zoom," "shrink," "pan," and "highlight" will be needed
also.

Command and control applications typically require a significant amount of
user interaction. Graphics capabilities must support interactive text entry,
input of data in video, fax, or digital format, the development and management
of menu-driven systems, the development and management of sophisticated multi-
window applications, and screenpainting. The use of menus and windows is
discussed in later paragraphs.

While pictures may be created, displayed and discarded "on-the-fly," it is
often desirable to store pictures or portions of pictures for later use.
Without a storage and retrieval capability, the reuse of a commonly needed
picture (such as a map) would have to be accomplished by including the map-
drawing program in every new application. A better method is for the applica-
tion program to simply request that the map be retrieved from the common
database and displayed. In addition to storage, the capability to transfer a
picture from one system to another must be provided. Support must be provided
for the generation and interpretation of pictures expressed according to a
particular protocol.

A number of national and international graphics standards exist, the
benefits of which are independence of application programs from device and

vendor dependencies, thereby improving the portability of application programs
and data. These standards represent a hierarchy of graphics software layers
which can be compared to the Open Systems Interconnection (0SI) model for

E.4.2.3




communications software. [HIN84] Among the most promising standards are the
Graphical Kernel System (GKS) and Programmer's Hierarchical Interactive
Graphics Standard (PHIGS). GKS functionality ranges from simple passive
output to complex interactive graphics, and developments are underway to
support three-dimensional graphics (GKS 3-D). ANSI language bindings,
including Ada, are part of the GKS standard, and Ada implementations of GKS
exist., [LEO85] PHIGS was designed to be upward compatible from GKS and an Ada
binding for PHIGS has been developed.

Personal workstations with high resolution bit-mapped displays continue to
decrease in cost, making available and very attractive the creation of
animated drawings. Animation is a wonderful technique for illustrating
dynamic objects and their actions. A very interesting discussion of the use
of animation within a programming environment is provided by London and
Duisberg. [LD85] The authors describe the need for an animation toolkit - a
set of easily learned, easily applied, portable animation routines to relieve
the tedious programming associated with computer animation. Such a toolset
would include a library of reusable and connectable animation routines for
creating new views. An animation toolset should be provided in the Space
Station Development Environment along with packages for developing menu- and
window-based systems.

Menu-driven systems have become commonplace for command and control
applications. For the number of options and the sizes of databases we
anticipate for the Space Station computing system, typical tree-structured
menu systems will not be sufficient. The problem with these menus, which
typically have numerous entries, is that they consume precious screen space
and force the user to spend valuable time searching for a particular entry.
Popular mechanisms to solve this problem include partitioning of entries
according to logical function, pop-up submenus for related but more specific
entries, paged menus and scrolling menus.

In any menu system, accomodation must be made for both naive and expert
users, which implies that there must be an alternate route for commanding or
selecting entries. Experience has shown that expert users will memorize such
alternate routes to avoid using menus whenever possible. These alternate
routes should be made obvious in training and documentation and designed to be
consistent across the user interface. With an intelligent user interface
which understands the user's role and experience level, continual customiza-
tion and optimization of menus could be made (tailoring to the user profile).
For example, reorganization of menu entries in accordance with frequency or
infrequency of use may be in order. Existing menu systems used by NASA, such
as the Transportable Applications Executive (TAE) do not include these
flexible and intelligent capabilitites. [TAE85]

Multiwindow communication is desirable in situations where the user is
concurrently performing many tasks. An example would be monitoring and
analysis in a mission control center where displays are updated simultaneously
by one or more real-time processors. Windowing capabilities are provided by a
window manager, which both presents information in windows and allows the user
to manipulate windows. Most window management systems fall into one of two
categories: "tiling" or "desktop." Tiling involves arranging windows so that
no overlap of windows occurs on the display screen (tiling is used in the
Xerox Cedar System and the Microsoft Windows system). A desktop window
manager does exactly the opposite - rectangular windows overlap like pieces of

E.4.2.4



-

paper on a desk (the Smalltalk environment developed at Xerox PARC
demonstrates a desktop window manager).

There are advantages and disadvantages to both types. Desktop window
managers offer the user the most flexibility in arranging windows but at the
same time require the user to perform an inordinate number of functions
relating to the rearrangement of windows. The tiling model relieves the user
of most of the window management functions but typically performs automatic
resizing and rearranging which may not be suitable or desirable. Perhaps the
best choice is a combination of the tiling and desktop schemes, where the
desktop model is employed when the user is performing many different tasks at
one time, and the tiling model is employed when the user is coordinating many
views or actions to accomplish a single goal. It is essential also that the
user be able to easily and quickly move, size, and cover windows, and be able
to move information from one window to another (cut and paste operations).
The proposed intelligent user interface could assist in the manipulation of
windows by understanding the application domain and choosing sizes and
arrangement as appropriate.

Some user interfaces employ the use of icons in conjunction with windows,
Often, icons are used to symbolize available software utilities (such as mail)
and document folders. Icons could be used to provide the user with valuable
information regarding the context of his working environment. For example,
for each window an icon could be provided which tracks the progress,
associated files and problems with the window's associated task. Such
information assists users who may otherwise lose track of what they are doing.
This useful concept is illustrated in the PERQ Sapphire window manager. [SAP]
Because of the space station computing system's projected international use,
the use of icons may be helpful throughout the interface, although care must
be taken not to use an icon which is culture-peculiar (e.g., a "mailbox" may
not be very communicative outside of the U.S.).

Requirements for Intelligence in the User Interface

The diversity of users and missions for the space station presents a
formidable challenge in the design of a generalized user interface executive.
Current technologies in natural languages and expert systems point to numerous
potential instances whereby the performance of the user interface could be
significantly enhanced thrcugh the addition of intelligence.

One significant opportunity for improving user interfaces discussed
previously (especially for naive users) is to incorporate natural language
interfaces, Currently, we do a reasonably good job of literal interpretation
of English sentences in static contexts and limited, well structured domains
of application. [ITW83] Yet many of the natural language technologies can
also be applied to intelligent command interpreters and query processors. As
a result, significant benefits can be realized by both the inexperienced or
casual users (e.g., payload telescience) and by highly skilled operations,
test and integration personnel.

An intelligent user interface could translate loose or shortened queries or

commands provided by the user into correct and fully qualified messages to the
space station computing systems based on stored knowledge of:

E.4.2.5



o Missions

0 Individual user roles within the missions
o Operational environment configuration
Operational environment state

Individual user characteristics

User's current context

© 0 o

Stored knowledge of space station missions would define the underlying
bases for communication by:

o Establishing the vocabulary, including abbreviations, acronyms, synonyms,

generalizations, set memberships, abstractions, type inhertances, etc.
[BRA83]

o Defining acceptable actions, that would include prepatory decisions, test

actions, main goals, cautionary actions, concluding actions or enablement
actions. [GAL84]

o Establishing thematic role frames, that specify anticipated or allowable
action themes involving the thematic object being queried or commanded,
the agent for action, instruments involved in the action, along with
action descriptors including source and destination, trajectory, location,
time or duration. [WIN84]

This level of knowledge allows robust interpretation of queries or
commands, whether provided by natural language input or by more structured
language-based inputs. Additional capability can be added to the user
interface if knowledge of individual user roles within the missions are also
provided. This would allow the user interface to:

o Restrict user actions, providing another level of security at the user
interface.

o Forgive erroneous or flawed input, now that the bounds of an individual's
interaction is known.

o Provide more power in the user interface by calling up scripts [SHA85] of
frequent or allowable action sequences.

Knowledge of the environment configuration and the environment state would
allow yet another level of user input checking. Because ground-based
commanding of space station operations or payloads must bear the response
delays of ground routing and satellite links, it is desirable to provide the
maximum amount of user input checking at the point of input. Certainly, one
would want to restrict any actions that are dangerous or detrimental to the
platform, payloads or mission. While there would undoubtably be checks made
at the point of commanding, an additional layer of user input fault tolerance
is often necessary.

Knowledge and observation of user characteristics would allow static and
dynamic tailoring of the user interface for individuel users. The most
obvious application would be in acknowledging or inferring the skill levels of
users and modifying the user interface input and presentation modes
accordingly. This would circumvent the frequent problems associated with
powerful interfaces being hard to learn and "user-friendly" interfaces getting

E-4.2o6



in the way of experienced users. In addition, the user interface could employ
selective dissemination of information techniques which can dynamically tailor
the method presentation (e.g., text vs. graphics) to the user profile [ITW83]
or selective omission of information techniques (e.g., abstraction, indexes,
summarization) [WIN84].

The technologies exist today to provide the capabilities described above in
a cost-effective, low risk and timely fashion for space station. Over time,
the completeness and robustness of the knowledge base would improve, providing
an increasingly powerful user interface.

In the long term, knowledge of the users context will provide the most
significant improvement in the user interface. Here, the intelligent user
interface would attempt to understand the users intent and recognize the plan
being pursued. In this mode, the user interface would constantly be analyzing
a user's interaction in light of his role and in light of the state of the
environment to answer the following questions: [SHA85]

o Why is this character doing what he is doing?
o What are is motivations?

o What are his plans?

o What's his intention?

To accomplish the understanding of a user's context, additional research is
needed in concept modeling and reasoning about goals and actions of rational
agents (i.e., the user). [ITW83]. Once achieved, the user interface could
become an active element of the user-computer dialog, instead of a passive
one. This could be most important when responding to emergency or abnormal
circumstances where the user must quickly take some form of alternate action.
In such a situation, the user does not have the time (or often the presence of
mind) to completely describe a new course of action. Instead, he would
leverage the machines knowledge of context and succinctly execute a new set of
actions, such as: [HAM84]

Use alternate agent to accomplish the goal
Use alternate plan

Execute script rapidly

Wait out current state

Jump into the middle of the script
Counterplan against a potential future state
Put up with it

Recover

000 000O0OO0OO0

In addition to augmenting the operational user interface with knowledge-
based capabilities, there is also significant potential for assisting the
dialog design, prototyping and management tasks with expert system
capabilities., Mission and user role knowledge can assist in simulating user
interfaces and rapid prototyping. An expert system could assist the dialog
authors in selecting interaction approaches and configuring the user interface
accordingly. Similarly, there is a potential for assisting in the
interpretation of user interaction data and metrics and in suggesting
improvements or explaining perceived behavior. [ITW83]

E.4,2.7



Although there has been only limited work in incorporating artificial
intelligence technologies into intelligent user interfaces, we are convinced
that there is significant potential, particularly for a program as complex as
space station.

User Interaction Design and Validation

A real challenge lies in combining these user-interaction capabilities in a
way that is consistent and conherent for the particular users, their tasks,
and their environment. This is an especially difficult task because
capabilities or features which may be desirable for one class of users, type
of activity or operational environment may not be for another. For example,
features which support ease of learning are needed for the inexperienced or
infrequent user while features to enhance efficiency and power are likely to
be far more important for experienced or every-day users. The characteristics
of the operations or tasks that are carried out have implications for user-
interface design as well. For tasks that are repetitive in nature (e.g., data
entry and text editing) efficiency of physical actions (such as number of key
strokes) is important. For tasks requiring a high level of mental effort,
minimizing the user's mental load and reducing errors is more important.

In short, the features required to support effective user interaction can
mean different things for different users and types of tasks. In addition,
users themselves are not static entities. Ideally, one would like user
interfaces which evolve as a given user gains experience and sophistication,
both with the task and with the computer system.

The major components of effective user-interface design include:

o the ability to evaluate key features of user interfaces, especially at
an early point in the development

o the availability of a toolset to support user-interface development
o0 a system architecture which allows development of user interfaces to
proceed independently and in parallel with development of the rest of the

system.

Evaluating User Interfaces

The design of user interfaces should proceed in & much more iterative
fashion than the design of other parts of the software. There are too many
unknowns concerning which combination of user-interface capabilities will best
suit the various types of users, their tasks and operational environments. At
the same time, there are few design principles to which a developer can turn
for concrete guidance. Even obviously important principles such as
"consistency” can be difficult to apply in practice since the designer's
concept of consistency may not fit the users. Design decisions which seem
obvious to the developers can lead to confusion among users.

User behavior can be a valuable source of guidance in selecting user-
interaction capabilities. By observing how users accomplish a given task,
what errors they make, how much time they require, and so on, the designer has
an objective and meaningful basis for choosing among alternatives and for
confirming the usability of choices already made. The earlier one can begin

£.4.2.8



as

to gather this type of information the better, using prototypes and
simulations to test out design alternatives.

These evaluations can range from informal observational studies to formal
standardized experiments. If the evaluation is concerned solely with
identifying the strengths and weaknesses of a single design, then an informal
observational study is sufficient. If the purpose of the evaluation is to
compare alternative designs, then one must turn to the methodology of
controlled experimentation, using a standard set of procedures in order to
produce as unbiased an evaluation as possible. In either case, in order for
the evaluation to be valid, the users, their tasks, and surrounding conditions
must be representative of those that will be supported by the operational
system.

Simulations may be of special interest in the design of the space station
because they can be used to evaluate user-interaction capabilities that do not
yet exist, thus providing information about the likely benefits resulting from
various technologies that may require substantial resources to implement.
Gould, Conti, and Hovanyecz [1] carried out this type of study by simulating a
"listening typewriter" that could take human speech as input and produce a
printed version of that speech as output. A human typist hidden from view
simulated the speech recognition capabilities required for the typewriter.

Tools for Developing User Interfaces

In light of the above discussion, facilities are needed for recording user
interaction. The level of detail of the information captured can vary from an
atomic level (e.g., every keystroke) to a much higher level such as the total
time required to complete a given task or a summary of the different commands
used. The level of detail will obviously depend on the question of interest.
In evaluating a text editor, for example, one may wish to log a time-stamped
record of all keystrokes. Tools are also needed for prototyping user
interfaces not only in terms of static displays but in terms of the dynamic
aspects of an interaction as well.

Tools and associated databases are needed to assist in defining user-input
languages and in creating, editing, and storing displays and display
definitions of all types including graphics, text, animation, menus, and
forms. The Dialogue Management System (DMS), developed by Hartson and his
colleagues [3], contains many of these capabilities.

Architecture for the Intelligent User Interface System

Given the iterative nature of user-interface design, one of the key
properties desired of user interfaces is flexibility. The space station
computing system must allow changes in user interfaces as a result of
improvements suggested by user testing or the addition of new users, new
operations, or new operational sites. These changes must be made easily,
quickly, and without adversely impacting other parts of the software.

Software designers have traditionally isolated the software from the
effects of hardware changes. In the same way, the computational or functional
portion of the software should be isolated from changes in the portions
controlling the user interface. Hartson and his colleagues [3] have written
extensively about the architectural issues involved.

El462.9



Communicating with the user, including all input checking, should be the
responsibility of the user-interaction components while the correct and
efficient functioning of the system functionality should be the responsibility
of the computational components. Hartson has argued for a parallel separation
in the skills required to design, implement, and test these two components
with the user interface falling within the domain of the human-factors
specialist and the computational portion belonging to the traditional software
designer and programmer. Once the interface has been defined between these
two components, the two types of specialists can work independently and in
parallel without interference.

Because of the complexity of such a user interface and the complexity of
the various missions or roles, it is necessary to develop a support system for
the user interface. We propose a comprehensive user interface system
consisting of the following:

o User Interface Executive. This Ada software package would provide the
user interface utilities embedded within the operational space
station computing systems and be configured for the specific machine and
missions for each installation via a resident database and knowledge base.

o User Interface Prototyping Subsystem. This would bundle the user
interface executive with generalized simulation capabilities and data
monitoring and collection routines. This subsystem would provide a
pnambic ("pay no attention to the man behind the curtains") laboratory for
user interface experimentation.

o User Interface Configurator. This software would customize the user
interface executives for installation and also the prototyping subsystem
for experimentation. The customization provided by this tool would
include input and presentation options and the higher level dialog
customizations. The low level customizations would be accomplished
through a combination of program directed software builds from a library
of user interface primitives and parametric or language-driven initializa-
tions. Higher level customizations will be accomplished through a rule
compiler that will configure the user interface executive with the
required knowledge and inference algorithms.

o Dialog Management Subsystem. This subsystem would input knowledge
regarding the mission, users, configuration, etc., and be used to compose
and configure dialog sessions. Data received from the user interface
prototyping subsystem would be analyzed to validate dialog session before
deployment.

The user interface system would be designed with an open architecture to
allow easy expansion as new user interface technologies become available. The
approach discussed in this paper will naturally put greater requirements on
the local processing capabilities of the user interface devices. Current
declining cost trends in high resolution graphic workstations leads us to
believe that the increased functionality received from an intelligent user
interface will be a cost effective solution for the space station. In
addition, the proposed open architecture will lend itself to additions of new
technologies over the space station life cycle.

E.4.2.10



()

References

[BAS85] Basili, V. "A View of Language Issues", presented at Open Forum on
Space Station Software Issues, Apr. 25, 1985.

[BOE85] Boehm, B. "A View of Software Development Environment (SDE) Issues",
presented at Open Forum on Space Station Software Issues, Apr. 24, 1985.

[BRA83] Brachman, Ronald J. ,"What IS-A Is and Isn't: An Analysis of Taxonomic
Links in a Semantic Network," Computer, IEEE Computer Society, Vol. 16 No. 10,
October 1983.

[DOR83] Dorofee, A. and Dickison, L. "High Order Language: Second Level
White Paper, Space Station Operations Working Group, KSC/DL-DED-22, Jul. 29,
1983.

[DOR85] Dorofee, A. and Dickison, L. "Space Station Operations Language
System Requirements and Concept Definition (Preliminary)”, KSC, Aug. 1, 1985.

[GAL84] Galambos, James and Black, John, Using Knowledge of Activities to
Understand and Answer Questions, Yale University Cognitive Science Program,
Cognitive Science Technical Report #29, August 1984,

[GCH82] Gould, J.D., Conti, J., and Hovanyecz, T. "Composing Letters with a
Simulated Listening Typewriter". In Proceedings of the Human Factors in
Computing Systems Conference, ACM, Washington, D.C., 1982,

[HAM84] Hammond, Kristian, Indexing and Causality: The Organization of Plans

and Strategies in Memory, Yale University Department of Computer Science,
YALEU/CSD/RR#351, Dec 1984.

[HJ85] Hartson, H.R. and Johnson, D.H. "Dialogue Management: New Concepts in
Human-Computer Interface Development". ACM Computing Surveys, 1985.

[ITW83] Report of the Information Technology Workshop, National Science
Foundation, AD-A144-212, 1 Oct 1983.

[SHA85] Shank, Roger C., Questions and Thought, Yale University Department of
Computer Science, YALEU/CSD/RR#385, August 1985.

[SOW84] Sowa, John F., Conceptual Structures: Information Processing in Mind
and Machine, Addison-Wesley Publishing Company, 1984.

[WIN84] Winston, P. H., Artificial Intelligence, Addison-Wesley Publishing
Company, 1984,

[YH86] Yunten, T. and Hartson, H.R. "A SUPERvisory Methodology Notation
(SUPERMAN) for Human-Computer System Development”. In H.R. Hartson (Ed.),
Advances in Human-Computer Interaction, Ablex Publishing Corporation, 1986.

[HIN84] Hinden, H. "Graphics Standards Finally Start to Sort Themselves Out,"
Computer Design, May 1984, pp. 167-180.

[LEO85] Leonard, T. "Ada and the Graphical Kermel System,” Ada in Use:
Proceedings of the Ada International Conference, May 1985, pp. 136-150.

E.4.2.11



[LEO85] Leonard, T. "Ada and the Graphical Kernel System," Ada in Use:
Proceedings of the Ada International Conference, May 1985, pp. 136-150.

[GAR84a] Garman, J. "Data Processing for Space Station", Oct. 18, 1984
(presentation)

[GAR84b] Garman, J. "Networking and Data Processing for the Johnson Space
Center", Dec. 13, 1984. (presentation)

[HAL85] Hall, D. "Space Station and the Role of Software", presented at Open
Forum on Space Staton Software Issues, Apr. 24, 1985.

[SAP] Myers, Brad A. "The User Interface for Sapphire," IEEE Computer
Graphics and Applications, Volume 4, Number 12, December 1984.

E‘4.2.12



